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Abstract. In this paper we propose and solve analytically a class of models generalizing the
ballistic deposition (BD) model for irreversible adsorption of hard particles onto a line. In these
new models, when an incoming particle interacts with an adsorbed one, it adsorbs next to it
leaving between them a small gap of random size with characteristic lengthλ. The first moments
of the gap distribution suffice to describe the lowest-order corrections to the BD model. In
particular, for small values ofλ we obtain an asymptotic approach to the BD jamming coverage
in agreement with previous Brownian simulations which take into account diffusion and gravity.

1. Introduction

Recently, great effort has been devoted to the development of models describing the
adsorption of colloidal particles and macromolecules on solid surfaces [1–5]. Often, these
particles adsorb irreversibly forming monolayers on which the particles can neither desorb
nor diffuse. Realistic models must take into account the transport of the particles from the
suspension to the interface and their interaction with the substrate (including the previously
adsorbed particles). Several models, accounting for different transport processes, have been
introduced to describe these phenomena.

The simplest model is based on a geometric rule for the addition of new particles,
the random sequential adsorption (RSA) algorithm: new particles are sequentially added
to the surface at random positions, and those overlapping previously adsorbed particles
are rejected. This model is simple enough to allow an exact solution on one-dimensional
surfaces [6, 7] and approximate solutions and extensive simulations on higher dimensions
[8–10]. The RSA model has been shown to reproduce well the spatial distribution of small
latex particles adsorbed on solid surfaces [11], although the corresponding kinetic law is
not realistic.

Recent experimental results [11] on the adsorption of large colloidal particles show that
both the structure of the adsorbed layer and the kinetics of the process are well described by
the ballistic deposition (BD) model: the particles approach the surface following randomly
chosen vertical trajectories; if they touch an adsorbed particle, then they follow the steepest
descent path until they reach the surface and are adsorbed or they are trapped in a stable
position over the monolayer of adsorbed particles and are rejected. This mechanism can be
reduced to a set of geometric rules for the adsorption or rejection of new particles [12, 13],
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and can be exactly solved on one-dimensional surfaces [14, 15] and efficiently simulated
on higher dimensions.

Models that consider more general transport mechanisms, in particular diffusion [16, 17],
diffusion and gravity (DRSAG model) [18–20], hydrodynamic interactions [21, 22] and
colloidal forces [23] have also been analysed. In these models the trajectory of each
particle needs to be simulated using a Brownian dynamics algorithm [24]. Consequently,
the simulations are much more computationally expensive than those corresponding to the
geometrical models, and analytic results are difficult to obtain even for one-dimensional
models.

It would be useful to have models that, following geometric rules for the positioning
of new particles such as the RSA or BD model, could reproduce the main results of the
transport models in a much more economical way. Centring our attention on the geometric
distribution of the adsorbed particles, the final effect of the transport mechanisms is to modify
the adsorption probability at different points of the surface, depending on the vicinity of pre-
adsorbed particles. For example, if colloidal forces between particles are important, it has
been suggested that new particles adsorb according to a Boltzmann distribution [25]; in this
case, each particle alters the adsorption probability in a region of size comparable with the
range of the interaction potential. A similar effect is also observed in particles which adsorb
after diffusing in a gravitational field (the DRSAG model). If we consider sufficiently large
particles for which gravity becomes dominant, they tend to roll over the already adsorbed
ones, being adsorbed in their close vicinity. If one defines the dimensionless particle radius
R∗ (which quantifies the relative relevance of diffusion and gravity) as:

R∗ ≡ R
(

4πg1ρ

3kBT

)1/4

(1)

then the adsorption probability is enhanced in a region with a characteristic length of order
(R∗)−8/3 [20]. When gravity becomes infinitely strong (R∗ → ∞) this region collapses to
the point of contact between the particles, recovering the BD limit.

In this paper our aim is to develop a geometrical model similar to the BD model but
taking into account in an effective way the deviation which incoming particles suffer after
interacting with fixed particles. We assume that, when such an interaction occurs, due to
the effect of the different forces and transport mechanisms, the incoming particle adsorbs
near the fixed one in a region of sizeλ around the fixed one. No explicit form for the
probability distribution of adsorption at distanceh, 1(h), is supposed, we only require that
it must be zero out of the region of sizeλ. These assumptions are satisfied in the adsorption
of colloid particles with short-range interactions [1], or in the deposition of large particles
[20, 22].

The study of the model is carried out in (1+ 1) dimensions, which allows us to obtain
analytic results whenλ is smaller than the radius of the particles. As expected, in the limit
λ→ 0 we recover the BD model. When the characteristic distanceλ is small we can obtain
corrections to the BD kinetics up to any desired order O(λn). This approximation depends
only on the firstn moments of1(h). This property makes the results useful, because in
models in which transport effects are taken into account the functional form of1(h) is
usually unknown, but its first moments can be computed from simulations or approximate
methods. The usefulness of this method is illustrated by applying it to the DRSAG model
when gravity is strong enough (R∗ � 1). In this case, the mean deviation of an incoming
particle after interacting with a fixed one has been computed both from singular perturbation
arguments and simulations [20].

This paper is organized as follows. Section 2 is devoted to the description of the model
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and its basic equations. In section 3 we solve the kinetic equation and corrections to the BD
kinetics are obtained and applied to the DRSAG model. The possibility of a universal kinetic
curve for all these models, as suggested by experimental results, is discussed. Section 4 is
devoted to conclusions.

2. Description of the model

We consider an irreversible deposition model in which disks of unit diameter are sequentially
added to an initially empty line. The arrival rate of new disks is supposed to be constant,
and can be fixed to one per unit length and unit time by suitably choosing the unit of time.
As in the BD model, we assume that when an incoming particle is trapped into a gap of
size less than one particle diameter it needs a very large time to escape from it and thus is
rejected.

In the BD model it is also assumed that incoming particles which reach the adsorption
line after touching on a previously adsorbed one follow the steepest descend path, adsorbing
in contact with it. In our model, we generalize this adsorption rule assuming that the
transport mechanisms lead to the adsorption of the new particle near the fixed one, provided
that enough space is available, leaving between them a gap of size betweenh andh + dh
with probability1(h) dh. The only constraint we impose to the probability density1(h) is
that it must be short ranged, namely

1(h) = 0 h > λ (2)

whereλ is a fixed parameter of the model which we restrict to be in the interval [0, 1
2]

for reasons explained below. This adsorption rule is only valid if there is no superposition
between the influence due to an adsorbed particle and its next neighbour; therefore a gap
of lengthh′ > 1+ 2λ must exist between these particles. For smaller gaps the adsorption
rule has to be modified as shown below.

Thus, the rate of arrival particlesk(h′, h) per unit time and length at positionh into a
gap of sizeh′ (see figure 1) is:

k(h′, h) = 1+1(h)+1(h′ − h− 1) h′ > 1+ 2λ. (3)

The contribution 1 to this rate comes from the constant raining of particles over the line
and1(h) and1(h′ − h − 1) are the contributions due to the incoming particles which
interact with the particles fixed at both sides of the gap. These particles are eliminated in

h’

h 1

Figure 1. Illustration of the governing equation for the non-uniform deposition.
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the RSA model; however, we consider here (as in the BD model) that all of them reach the
adsorption line due to the transport mechanisms, therefore we have the normalization∫ λ

0
dh1(h) = 1. (4)

The precise value ofλ and the form of1(h) depend on the details of the transport
mechanisms present in the problem and need not be specified here. The new gap lengthh

is a random variable with moments

µn ≡ 〈hn〉 =
∫ λ

0
dhhn1(h). (5)

The BD model is recovered in the limit1(h)→ δ(h), µn→ 0.
If the incoming particle adsorbs into a gap of lengthh′ 6 1+2λ there is a superposition

between the contributions due to both gap-limiting particles, and the adsorption rate is
supposed to adopt the form:

k(h′, h) = 1+12(h;h′) 1< h′ < 1+ 2λ. (6)

The only hypothesis we assume about12(h;h′) is that also in this situation any incoming
particle reaching an unstable position will be adsorbed, so that12(h;h′) is normalized
according to ∫ h−1

0
dh′12(h;h′) = 2. (7)

If this normalization is imposed andλ 6 1
2, then the specific form of12(h;h′) will be

irrelevant for the adsorption kinetics, as we will see in section 3.
This adsorption model is local in the sense that the adsorption probability only depends

on the gap in which the adsorption attempt takes place. For values ofλ larger than1
2 one

should also consider the possibility of non-local effects; the adsorption rate in a gap could
not only depend on the particles limiting the gap but also on further neighbours. Physically
this is the case when an incoming particle, after interacting with an adsorbed one, can
diffuse over a large distance and interact with several other particles before being adsorbed.
In this paper we only consider values ofλ 6 1

2 for which non-local effects are not possible.
For one-dimensional adsorption models which satisfy this shielding property, a closed

kinetic equation can be written for the density of gaps [17]. LetG(h, t) be the number
density of gaps with lengthh at time t . This quantity evolves according to:

∂G(h, t)

∂t
= −k0(h)G(h, t)+ 2

∫ ∞
h+1

dh′G(h′, t)k(h′, h) (8)

wherek(h′, h) is the probability per unit length and unit time that the deposition of a disk
in a gap of lengthh′ > h + 1 produces gaps of lengthh andh′ − h − 1, andk0(h) is the
total rate at which gaps of lengthh are destroyed by the addition of a new particle. The
first term on the r.h.s. of equation (8) accounts for the destruction of gaps of sizeh and
the second term accounts for the creation of gaps from larger ones after the adsorption of
a new particle.

The total rate at which gaps of lengthh′ > 1 are destroyed is, according to (3), (6) and
the normalization (4), (7):

k0(h) =
∫ h−1

0
dh′ k(h, h′) = h+ 1 h > 1. (9)
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Now, we can write explicitly the kinetic equations corresponding to our model. For gaps
of sizeh > 1 (i.e. gaps at which adsorption can take place) we have the integro-differential
equation:

∂G(h, t)

∂t
= −(h+ 1)G(h, t)+ 2

∫ ∞
h+1

dh′G(h′, t)[1+1(h′ − h− 1)] h > 1. (10)

Gaps of lengthh 6 1 can only be created, not destroyed. The corresponding kinetic equation
is:

∂G(h, t)

∂t
= 2

∫ ∞
h+1

dh′G(h′, t)k(h′, h) h < 1 (11)

wherek(h′, h) depends onh andh′ as given by (3) or (6) depending on the value ofh′.
Equation (11) is an ordinary differential equation, because in the evaluation of the integral
on the r.h.s. one only needs to knowG(h, t) for h > 1, which is the solution of (10).

These equations must be supplemented with a normalization condition that, according
to the definition ofG(h, t), reads [17]∫ ∞

0
G(h, t)dh+

∫ ∞
0
hG(h, t)dh = 1. (12)

Geometrically, the first term is the fraction of the line filled with particles, while the second
term is the line fraction occupied by gaps of any length. Note that in equation (10) only
the particle adsorption rate given by (3) appears whereas (6) is irrelevant to obtain the
distribution of gaps with space available for adsorption. This fact is due to the constraint
λ 6 1

2.
Once equation (10) is solved, one can obtain the adsorption rate8(t) by averaging the

gap destruction ratek0(h) given by equation (9) over the number density of gapsG(h, t)

for h > 1:

8(t) =
∫ ∞

1
(h+ 1)G(h, t)dh. (13)

From the normalization ofG(h, t), equation (12), one can see that the value of8 changes
from 1 for an empty line to 0 when all the gaps have a length smaller than 1 (saturation).
Equation (13) has another simple interpretation:8 is the effective fraction of the line
available for adsorption of new particles. In order to show this, one should note that a new
particle will adsorb in a gap of lengthh > 1 if it falls directly into the free length of the
gap (which ish− 1) or on an unstable position over the limiting particles of the gap which
adds a contribution of 1 for each gap limiting particle. Therefore, the length available for
adsorption in a gap of lengthh > 1 is h+1, and the total available surface8 is the average
of this quantity with the distribution of gapsG(h, t).

3. Solution of the model

First, we solve the integro-differential kinetic equation (10). Following the usual ansatz for
one-dimensional models [14, 15], we look for a solution of the form

G(h, t) = e−(h+1)t t20(t) h > 1 (14)

where0(t) is independent ofh, and satisfies the first-order differential equation:

d ln[0(t)]

dt
= 2

[
1̃(t)e−t − 1− e−t

t

]
(15)
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where1̃(t) = ∫∞0 dh e−ht1(h) is the Laplace transform of1(h). The general solution of
equation (15) is:

0(t) = K exp

{
− 2

∫ t

0
du

[
1− e−u

u
− e−u1̃(u)

]}
. (16)

Substituting (14) into (13) one obtains for the available surface function,

8(t) = e−2t (2t + 1)0(t). (17)

The constantK can be fixed by imposing the normalization condition (12) at any time, or
equivalently8 = 1 for an empty line (t = 0). From equation (17) we obtain8(t = 0) = K,
soK = 1. The coverageθ(t) (defined as the relative length of the line covered by particles)
is obtained by integration of8(t):

θ(t) =
∫ t

0
8(t ′) dt ′ =

∫ t

0
dt ′ e−2t ′(2t ′ + 1)0(t ′). (18)

The coverage increases monotonically (due to the irreversible nature of the process) until it
reaches a model-dependent saturation value,θ∞, when no available space remains for the
adsorption of new particles. Note that in calculating both the coverage and the available
surface function, we needG(h, t) only for h > 1, thus none of these quantities depends on
12(h

′;h).
From equation (18) it is easy to obtain the asymptotic approach to saturation following

the same procedure as that in the BD case [13]. Subtractingθ(t) from θ∞, integrating by
parts and retaining the dominant term we have:

θ∞ − θ(t) = e−2t

t

[
e−2γ+2α +O

(
1

t

)]
(19)

whereγ is the Euler constant andα depends on the specific model considered and is given
by

α =
∫ ∞

0
du e−u1̃(u) =

∫ ∞
0

dh
1(h)

h+ 1
. (20)

It is easy to show that23 6 α 6 1, thusα > γ . Therefore, the approach to the jamming
limit is exponential, as in the BD model [13] (which is recovered whenα = 1), the only
difference being the value of the proportionality constant. The reason for this is that, as in
the BD model [13], the asymptotic behaviour is governed by the filling process of small
gaps of lengthh ≈ 1+, and these small gaps are occupied at a rateh + 1 independent of
the details of the model.

Now we show how the saturation coverage approaches asymptotically the BD value
whenλ→ 0 and how to obtain corrections to the BD kinetics up to a desired order inλ.
First we use the expansion of1̃(u) in powers ofu, which is related to the momentsµn by

1̃(u) =
∞∑
n=0

(−1)n
un

n!
µn. (21)

When the rangeλ of the distribution1(h) is small, its moments are quantities of decreasing
order of magnitude,µn = O(λn). Using (21) in (17) we obtain for the available length:

8(t) = 8BD(t) exp

{
2
∞∑
n=1

(−1)nµn

[
1− e−t

n∑
k=0

tk

k!

]}
. (22)

This expression can now be expanded in several ways: one can obtain short-time or
low-coverage expansions valid for all the allowed values ofλ or expansions in powers of
λ valid for all time or coverage values.
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In the expansion of equation (22) as a power series int , the term O(tk) contains
contributions from momentsµn with n < k. This fact is also reflected in the low-coverage
expansion. For example, up to O(θ3) we obtain:

8(θ) = 1− (5+ 2µ1)
θ2

2
+
(

26

3
+ 2µ1+ µ2

)
θ3

3
+O(θ4). (23)

The term of order O(θ) is 0 as expected because one particle is not enough to prevent
adsorption. The correction of orderθ2 measures the rejecting efficiency (or mean exclusion
length) of the two-particle configurations leading to the rejection of new particles. Note
that it is exactly linear inµ1 and does not depend on higher-order moments. The reason
for this dependence is that, although the configurations which reject particles are the same
in this model as in the BD model, their probability is not the same because our adsorption
rule generates traps of characteristic sizeµ1.

Now, we expand equation (22) as a power series inλ for all times or coverages. The
term O(λk) depends on the momentsµn with n 6 k. This expansion can be integrated in
time in order to obtain the coverageθ(t). For example, up to order O(λ2) we have for the
jamming coverage:

θ∞ = θBD
∞ + c1µ1+ c1,2µ

2
1+ c2µ2+O(λ3) (24)

whereθBD
∞ = 0.808 65. . . is the jamming coverage of the BD model and the coefficients

ci, ci,j are given by definite integrals obtained from the integration of (22); the first ones
arec1 = −0.221 04. . ., c1,2 = 0.070 10. . ., c2 = 0.074 62. . ..

As mentioned in the introduction, the momentsµn can be obtained—at least for
small n—from simulations with only one adsorbed particle (or sometimes by approximate
methods) taking into account the relevant transport processes. One could try to obtain the
kinetic law and the saturation coverage by performing simulations up to the jamming limit,
but this requires a large computational effort. Equation (24) provides a simple way to
overcome this problem in the case of short-range models. An approximation to the kinetics
up to a given order O(λn) can be obtained if we know the firstn moments of1(h). It is
not necessary to know the precise form of1(h).

To illustrate the utility of equation (24) we apply it to the (1+ 1)-dimensional DRSAG
model in the limit in which the motion of diffusing disks is dominated by gravity (R∗ � 1).
In this model, although1(h) does not vanish for finite values ofh, it decays exponentially
fast, and we expect that a good approximation can be obtained by using equation (24).
From a perturbative solution of the transport equation we have obtained up to the lowest
order [20]:

µ1 = 0.6967

(R∗)8/3
µ2 = 2.0113

24/3(R∗)16/3
. (25)

Thus, using (25) in (24) we obtain:

θ∞ = θBD
∞ − 0.1540(R∗)−8/3+ 0.0936(R∗)−16/3. (26)

This approximate expression is in good agreement with the results obtained in [20] by means
of Brownian dynamics simulations which take into account diffusion and sedimentation, as
shown in figure 2. Clearly, equation (26) describes fairly well the asymptotic behaviour
of θ∞ when approaching the BD limit (R∗ � 1) and gives good approximations for the
jamming coverage for values ofR∗ larger thanR∗ ∼ 2.0 (µ1 ∼ 0.11). At this point, we
note that the existence of an universal curve forθ∞ in the DRSAG model, independent
of the dimension of the system, has been proposed based on simulations [19] and on a
boundary analysis of the transport equation [20]. Thus, equation (26) could also be useful



80 J Faraudo and J Bafaluy

θ

Figure 2. Saturation coverageθ∞ for the (1+ 1)-
dimensional DRSAG model as a function ofR∗. Points:
simulations data from [20], full curve: equation (26),
broken curve: equation (26) truncated to first correction
to BD.

Figure 3. 8 as a function of the coverage for the BD
model (broken curves) and using equations (22) and
(25) forR∗ = 2.0 (short broken curves). We also show
8 as a function ofθ/θ∞ for the BD model (full curve)
and forR∗ = 2.0 (crosses).

for the study of large particle adsorption onto bidimensional surfaces. For instance, if we
consider polystyrene beads in water at 300 K,1ρ = 45 kg m−3 from (1) we obtain a radius
about 2.45 µm, which is accessible to experimentations [11].

Also, these experiments [11] have shown that some results related to the kinetics of
the process (dilution curve, fluctuations in the number of particles), when expressed as a
function of θ/θ∞, seem quite independent ofR∗ and are close to the BD results. This fact
could indicate that8 is, at least approximately, a function ofθ andR∗ through the variable
θ/θ∞(R∗) only. This feature is also present in our model, as shown in figure 3 by plotting
8 as a function ofθ/θ∞ for R∗ = 2 andµ1, µ2 given by equation (25). Therefore, the
kinetic laws corresponding to models of the class analysed here are very close to the BD
kinetics when the coverage (or time) is properly rescaled to take into account the different
jamming saturation values reached for each model. One can also easily check that this
feature is also present in some other toy models, taking some simple explicit forms for the
function 1(h) and using equations (17) and (18). We checked this feature taking1(h)

linearly increasing or decreasing with distance, and with a step form.
An aspect closely related to the kinetics of the adsorption process, which is also measured

in experiments, is the fluctuation observed in the mean number of particles adsorbed on a
large, but finite surface. The measured reduced varianceσ 2/〈n〉 shows an horizontal slope
for low coverage for all measuredR∗ [11] and seems to be of the orderθ3 for small θ .
Recently [26] a theoretical relationship between8(θ) and the reduced varianceσ 2/〈n〉
(which is a measurable quantity) has been obtained, and a particularly remarkable result is
that if 8(θ) has the form8(θ) = 1−Bkθk +O(θk+1), i.e. at leastk adsorbed particles are
required to preclude an adsorption attempt, the reduced variance is:

σ 2

〈n〉 = 1− 2k

k + 1
Bkθ

k +O(θk+1). (27)

Thus, in these adsorption experiments performed onto bidimensional surfaces, at least three
particles are needed to preclude adsorption of an incoming one. In our model of adsorption
onto a line we havek = 2 andB2 = µ1+ 5

2 according to (23).
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4. Conclusions

In this paper we have analysed a class of geometrical models which generalize the BD
model for irreversible adsorption of hard disks onto a line. In the BD model, an incoming
disk touching an adsorbed one, rolls over it and adsorbs in contact with it. In our model
we assume that, due to transport effects, the incoming particle adsorbs near the fixed one
leaving between them a gap of sizeh with probability density1(h).

The only hypothesis we need is that, after interacting with a fixed particle, an incoming
one cannot adsorb at a distance greater thanλ from it, i.e.1(h) = 0 for h > λ. To allow
an exact description of the model,λ is restricted to be smaller than12. We do not make any
further hypothesis concerning the dependence of1 with position.

Due to the fact that this one-dimensional model is local (in the sense that the adsorption
rate depends only on the gap in which adsorption takes place), an exact balance equation
for the free gap distribution can be formulated. This equation has been solved analytically
and we have obtained the density of gaps, the available surface function and the coverage
as a function of time.

The class of models presented in this work can be used to obtain corrections to the BD
kinetics due to transport effects. If the characteristic lengthλ is small, the momentsµn
of 1(h) are quantities of decreasing order inλ (µn ∼ O(λn)). The kinetics of the model
can be obtained up to order O(λn) if we know up to the momentµn although the detailed
form of 1(h) is not specified. This is a useful feature because when transport effects
are included, the transport equation can be solved only in some simplified cases and thus
1(h) usually cannot be computed analytically. However, its first moments can be obtained
from simulations or approximate methods. We recall that simulations performed in order
to obtain the first momentsµn only require one fixed particle and thus are computationally
less expensive than those performed up to saturation.

We have applied these results to large disks diffusing in a gravitational field (the so-
called DRSAG model). If gravity becomes dominant, incoming particles tend to roll over
adsorbed ones and adsorb at a close distance. The first moments of this deviation,µ1

andµ2, were obtained as a function of the scaled particle sizeR∗ (R∗ � 1) in [20] from
a boundary layer solution of the transport equation. This result allows one to obtain an
approximate expression, equation (26) for the coverage as a function ofR∗. The comparison
of the saturation coverage obtained from Brownian dynamics simulations with equation (26)
shows that the latter givesθ∞(R∗) with good approximation for values ofR∗ larger than
R∗ ∼ 2.0. For smaller values ofR∗, incoming particles can diffuse over larger distances
after interacting with an adsorbed one, and the general picture of the models outlined in
this paper is no longer applicable.

We have also shown that the kinetic laws of the class of models analysed in this paper
are close to that of BD if time or coverage is properly normalized to take into account
their different jamming coverage values. This is similar to what was observed in adsorption
experiments [11] with colloidal particles of different size. In these experiments, several
magnitudes intimately related to the kinetic law were well fitted using the ballistic model
and they seem independent of the size of the particles when plotted againstθ/θ∞. Of course,
this fact does not imply that the structure of the adsorbed layer is similar to BD although the
kinetic law is coincident. At this point, we remark that as we showed in [20], for the values
of R∗ considered here, theδ function singularities present in the radial distribution function
g(r) of the BD model are smoothed by diffusion, which diminish strongly the probability
of formation ofk-mers.

Finally, we should note that the generalization of this class of models for values of
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λ > 1
2 is difficult, because in such a case the shielding property is not verified. One must

take into account that an adsorbed particle can influence not only the gap which it limits but
also other neighbouring gaps. In fact, when diffusion and gravity become comparable, we
have showed that the effect of third neighbours affects the structure of the adsorbed layer
[20]. After interacting with an adsorbed particle, an incoming one can diffuse far from it
and adsorb in another gap. Thus, for these more general cases the kinetic equation for the
gap density must be revised consistently with a more detailed description of the particles
transport towards the adsorbing surface.
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